

LA-UR-21-27851

Approved for public release; distribution is unlimited.

Title: Neutron Detection Efficiency Measurements of the Domino Detector for

the NEMO Experiment

Author(s): Young, Christian Xavier

Bartlett, Kurtis David

Smith, Karl

Barney, Jonathan Elijah

Intended for: Keepin Program end-of-summer presentations

Issued: 2021-08-05

Neutron Detection Efficiency Measurements of the Domino Detector for the NEMO Experiment

Christian Young^{1,2}, Dr. Kurtis Bartlett¹, Dr. Karl Smith¹, Dr. Jonathan Barney¹

¹Los Alamos National Laboratory

Intelligence and Space Research Space Science and Applications

²University of Tennessee

Tickle College of Engineering Department of Nuclear Engineering

LA-UR-XXXXXX

Summer Fun

Christian Young (ISR-1)

- Educational Background
 - o Purdue University, 2020
 - · B.S. Nuclear Engineering
 - University of Tennessee, 2025?
 - Ph.D. Nuclear Engineering
- Intelligence and Space Research (ISR)
 - Space Science & Applications (ISR-1)
 - Dr. Kurtis Bartlett, Dr. Karl Smith

- Research
 - Neutron detector efficiencies for moon orbit mission
 - Work at UTK: Neutron detection and radiography

Research Overview and Motivation

- Neutron lifetime measurements disagree
 - Plot from the Particle Data Group
- Differences stem from "beam" vs "bottle"
- New idea: space as a form of containment
 - Thermal neutrons from moon's surface
- Neutron-lifetime Experiment in the Moon's Orbit
 - CubeSat ride-along
 - Domino neutron detector on board
- Need to validate the detector's efficiency
 - RDT data only based on MCNP simulations

Research Approach

- Combined simulation and physical approach
 - MCNP: Energy-dependent flux
 - Physical: True count rates
- Take several measurements
 - Variable moderator thicknesses
 - o Cf-252 source
- Iterative unfolding process to extract efficiencies
 - Maximum-likelihood expectation-maximization
 - Monte Carlo methods for uncertainty

$$\begin{bmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,m} \\ x_{2,1} & \ddots & & \vdots \\ \vdots & & \ddots & \vdots \\ x_{n,1} & \cdots & \cdots & x_{n,m} \end{bmatrix} \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_m \end{bmatrix} = \begin{bmatrix} T_1 \\ T_2 \\ \vdots \\ T_n \end{bmatrix}$$

Summary of Results

- Figure shows calculated neutron detection efficiencies up to 1 MeV
- Agreement with RDT efficiencies
- Improvements can be made
 - Improved physical measurements
 - Reduced environmental impact
 - Longer count times
 - LANSCE
 - Time-of-flight measurements
 - o Finer binning

